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Selective Electrocatalysis of Olefins by a Water-soluble Manganese Porphyrin in 
Acidic Solution 
Mao-huang Liu and Y. Oliver Su 
Department of Chemistry, National Taiwan University, Taipei, Taiwan 10764, Republic of China 

Stable manganese(tv) tetrakis( N-methyl-2-pyridy1)porphyrin is electrochemically generated in acidic solutions at 
room temperature to  selectively catalyse the oxidation of olefins. 

Manganese complexes1-3 are thought to play an important 
role in the water-splitting reaction 2H20+4H+ + 0 2  + 4e-. 
Water-soluble manganese porphyrins have been of interest for 
their high oxidation states.4 Also, manganese porphyrins have 
been used to mimic cytochrome P-450 as a monooxygenase. 
Chemicals and electrochemical6 methods have been carried 
out to generate oxo-manganyl porphyrins,7 which can 
undergo oxidations towards olefins. 

However, water-soluble manganese(1v) porphyrins with N- 
methyl-4-pyridyl,8 sulfonatophenyl,9 or carboxyphenyllo sub- 
stituents at the mesu positions were not stable at pH <9.0. The 
electrocatalytic oxidation of olefins by the first of these was 
interrupted with the formation of decomposed products.11 

Manganese tetrakis(N-methyl-2-pyridy1)porphyrin MrP(2- 
tmpyp) forms stable O=MnIV(2-tmpyp) in pH 5.5 buffer 
solutions. The stability against ring oxidation is probably due 
to the proximity of the positively charged N-methylpyridinium 
groups to the porphyrin ring. O=MnIV(2-tmpyp) exhibits 
different activities in oxygen transfer reactions for various 
water-soluble olefins containing carboxylic groups. 

Fig. l(a) shows the electrooxidation of Mn"I(2-tmpyp) in 
pH 5.5 buffer solution using an optically transparent thin-layer 
cell .I* The equilibria at various potentials reflect the stability 
of the oxidized form. The formal potential (IF') is calculated*3 
to be +0.95 V. At Eappl = +1.07 V the absorption spectrum 
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exhibits peaks at 424 and 548 nm of O=MnIV(2-tmpyp).14 
However, in the presence of 0.05 mol dm-3 cyclopent-2-ene- 
l-acetic acid, the spectrum of MnIl'(2-tmpyp) at 364,454 and 
556 nm remains unchanged even at Eappl = +1.07 V [Fig. 
l(b)], but the absorbance in the 230 nm region steadily 
increases, which is not observed in the absence of MnIII(2- 
tmpyp). These observations indicate the formation of a new 
product concurrently upon the rapid reduction of O=MnIV(2- 
tmpyp) back to MnIII(2-tmpyp). When cyclopent-2-ene-l- 
acetic acid was replaced by cyclopentylacetic acid, the 
corresponding saturated compound, the absorption spectrum 
of O=MnIV(2-tmpyp) was then observed. The reaction 
mechanism thus can be expressed by Scheme 1. 

Bulk electrolysis was carried out and products were 
analysed. Ion chromatography shows a major product 1 and a 
minor one 2. Product 1 was isolated and its absorption 
spectrum exhibited a broad band at 226 nm. Parallel chemical 
oxidation of cyclopent-2-ene-l-acetic acid by tert-butyl hydro- 
peroxide in the presence of the manganese porphyrin was 
carried out. The product, cyclopent-2-ene-4-one-l-acetic acid, 
exhibits identical retention time and absorption spectrum as 1. 

Various water-soluble olefins which possess a carboxylic 
acid group were investigated for their activity in the Mn(2- 
tmpyp)-catalysed oxidation. The criterion for activity was the 
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Fig. 1 (a )  Thin-layer spectra of 1.0 X mol dm-3 MnIII(2-tmpyp) 
at different oxidation potentials in pH 5.5 buffer solution. Eapp = (i) 
0.40 (ii) 0.90 (iii) 0.93 ( i v )  0.95 ( v )  0.97 ( v i )  1.00 (vii) 1.02 (viii) 1.07 V. 
(b)  Thin-layer spectra of 1.0 x mol dm-3 Mn(2-tmpyp) 
containing 0.05 rnol dm-3 cyclopent-2-ene-l-acetic acid at Eapp = 1.07 
V in pH 5.5 buffer solution. Time interval = 1 h. 
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conversion of O=MnIV(2-tmpyp) back to MnIII(2-tmpyp) at 
Eappl 7 +1.07 V as shown in Fig. 1. The relative rates of 
oxidation of the different alkene substrates by e-MnIV(2- 
tmpyp) were then estimated by the absorbances of Mn"I(2- 
tmpyp) and O=MnIV(2-tmpyp). It was found that the rate was 
in the order of cyclopent-2-ene-1-acetic > cyclohex-l-ene-l- 
carboxylic acid > itaconic acid. For these products having 
absorbance in 240 nm region, allylic oxidation is proposed.15 
Compounds 3-10 are active and 11-18 inactive. 

It is noteworthy that there is some regularity in the results. 
(i) The 2-ene carboxylic acids cannot be oxidized by 
O=Mn*V(2-tmpyp), except cyclohex-1-ene-1-carboxylic acid 
and itaconic acid. (ii) All 3-ene carboxylic acids can be 
oxidized. (iii) Cyclic 4-ene carboxylic acids can be oxidized 
while straight-chain 4-enes cannot. ( iv)  All 6-ene carboxylic 
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acids can not be oxidized. (v) The 2,4-diene carboxylic acids 
and 2,6-diene carboxylic acids can be oxidized. 

The activity towards oxidation is probably related to the 
closeness of the double bond to the electron-withdrawing 
carboxylic group under which conditions the oxidation would 
be more difficult and would occur at a higher potential. Cyclic 
olefins appear more active and hence the stereochemistry is an 
important factor. Nearly all straight-chain 2-, 4- and 6-enes 
cannot be oxidized but 2,4-dienes and 2,6-dienes can. 
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